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Abstract— A long-standing line of work in economic
theory has studied models by which a group of people in
a social network, each holding a numerical opinion, can
arrive at a shared opinion through repeated averaging with
their neighbors in the network. Motivated by the observation
that consensus is rarely reached in real opinion dynamics,
we study a related sociological model in which individuals’
intrinsic beliefs counterbalance the averaging process and
yield a diversity of opinions.

By interpreting the repeated averaging as best-response
dynamics in an underlying game with natural payoffs, and the
limit of the process as an equilibrium, we are able to study
the cost of disagreement in these models relative to a social
optimum. We provide a tight bound on the cost at equilibrium
relative to the optimum; our analysis draws a connection
between these agreement models and extremal problems for
generalized eigenvalues. We also consider a natural network
design problem in this setting, where adding links to the
underlying network can reduce the cost of disagreement at
equilibrium.

1. INTRODUCTION

Averaging Opinions in a Social Network: An active
line of recent work in economic theory has considered
processes by which a group of people connected in a
social network can arrive at a shared opinion through
a form of repeated averaging [8], [11], [13]. This work
builds on a basic model of DeGroot [7], in which we
imagine that each person i holds an opinion equal to
a real number zi, which might for example represent
a position on a political spectrum, or a probability that
i assigns to a certain belief. There is a weighted graph
G = (V,E) representing a social network, and node i is
influenced by the opinions of her neighbors in G, with
the edge weights reflecting the extent of this influence.
Thus, in each time step node i updates her opinion to
be a weighted average of her current opinion with the
current opinions of her neighbors.

This body of work has developed a set of general
conditions under which such processes will converge to
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a state of consensus, in which all nodes hold the same
opinion. This emphasis on consensus, however, restricts
the focus of the modeling activity to a specific type of
opinion dynamics, where the opinions of the group all
come together. As the sociologist David Krackhardt has
observed,

We should not ignore the fact that in the real world
consensus is usually not reached. Recognizing this, most
traditional social network scientists do not focus on an
equilibrium of consensus. They are instead more likely to
be concerned with explaining the lack of consensus (the
variance) in beliefs and attitudes that appears in actual
social influence contexts [15].

In this paper we study a model of opinion dynamics in
which consensus is not in general reached, and our main
goal is to quantify the inherent social cost of this lack
of consensus. To do this, we first need a framework that
captures some of the underlying reasons why consensus
is not reached, as well as a way of measuring the cost
of disagreement.

Lack of Agreement and its Cost: We begin from
a variation on the DeGroot model due to Friedkin and
Johnsen [10], which posits that each node i maintains
a persistent internal opinion si, which remains constant
even as node i updates her overall opinion zi through
averaging. More precisely, if wi,j ≥ 0 denotes the
weight on the edge (i, j) in G, then in one time step
node i updates her opinion to be the average

zi =
si +

∑
j∈N(i) wi,jzj

1 +
∑
j∈N(i) wi,j

, (1)

where N(i) denotes the set of neighbors of i in G.
Note that because of the presence of si as a constant
in each iteration, repeated averaging will not in general
bring all nodes to the same opinion. In this way, the
model distinguishes between an individual’s intrinsic
belief si and her overall opinion zi; the latter represents
a compromise between the persistent value of si and the
expressed opinions of others to whom i is connected.
This distinction between si and zi also has parallels in
empirical work that seeks to trace deeply held opinions



such as political orientations back to differences in
education and background, and even to explore genetic
bases for such patterns of variation [2].

Now, if consensus is not reached, how should we
quantify the cost of this lack of consensus? Here we
observe that since the standard models use averaging as
their basic mechanism, we can equivalently view nodes’
actions in each time step as myopically optimizing a
quadratic cost function: updating zi as in Equation (1)
is the same as choosing zi to minimize

(zi − si)2 +
∑

j∈N(i)

wi,j(zi − zj)2. (2)

We therefore take this as the cost that i incurs by
choosing a given value of zi, so that averaging becomes
a form of cost minimization. Indeed, more strongly, we
can think of repeated averaging as the trajectory of best-
response dynamics in a game played by the nodes in
V , where i’s strategy is a choice of opinion zi, and her
payoff is the negative of the cost in Equation (2).

Nash Equilibrium and Social Optimality in a
Game of Opinion Formation: In this model, repeated
averaging — while it does not in general converge
to consensus among all nodes — does converge to
the unique Nash equilibrium of the game defined by
the individual cost functions in (2): each node i has
an opinion xi that is the weighted average of i’s
internal opinion and the (equilibrium) opinions of i’s
neighbors. This equilibrium will not in general cor-
respond to the social optimum, the vector of node
opinions y = (yi : i ∈ V ) that minimizes the
social cost, defined to be sum of all players’ costs:
c(y) =

∑
i

(
(yi − si)2 +

∑
j∈N(i) wi,j(yi − yj)2

)
.

The sub-optimality of the Nash equilibrium can be
viewed in terms of the externality created by a player’s
personal optimization: by refusing to move further
toward their neighbors’ opinions, players can cause
additional cost to be incurred by these neighbors without
accounting for it in their own objective function. In fact
we can view the problem of minimizing social cost for
this game as a type of metric labeling problem [5], [14],
albeit a polynomial-time solvable one with a non-metric
quadratic distance function on the real numbers: we seek
node labels that balance the value of a cost function
at each node (capturing disagreement with node-level
information) and a cost function for label disagreement
across edges. Viewed this way, the sub-optimality of
Nash equilibrium becomes a kind of sub-optimality for
local optimization.

A natural question is thus the price of anarchy for
this basic model of opinion formation: how far from
optimality can the Nash equilibrium be?

Our Results: Undirected Graphs: The model we
have described can be used as stated in both undirected
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Figure 1. An example in which the two players on the sides do
not compromise by the optimal amount, given that the player
in the middle should not shift her opinion. The social cost of
the optimal set of opinions is 1/3, while the cost of the Nash
equilibrium is 3/8.

and directed graphs — the only difference is in whether
i’s neighbor set N(i) represents the nodes to whom i
is connected by undirected edges, or to whom i links
with directed edges. However, the behavior of the price
of anarchy is very different in undirected and directed
graphs, and so we analyze them separately, beginning
with the undirected case.

As an example of how a sub-optimal social cost can
arise at equilibrium in an undirected graph, consider
the graph depicted in Figure 1 — a three-node path in
which the nodes have internal opinions 0, 1/2, and 1
respectively. As shown in the figure, the ratio between
the social cost of the Nash equilibrium and the social
optimum is 9/8. Intuitively, the reason for the higher
cost of the Nash equilibrium is that the center node —
by symmetry — cannot usefully shift her opinion in
either direction, and so to achieve optimality the two
outer nodes need to compromise more than they want
to at equilibrium. This is a reflection of the externality
discussed above, and it is the qualitative source of
sub-optimality in general for equilibrium opinions —
nodes move in the direction of their neighbors, but not
sufficiently to achieve the globally minimum social cost.

Our first result is that the very simple example in
Figure 1 is in fact extremal for undirected graphs: we
show that for any undirected graph G and any vector of
internal opinions s, the price of anarchy is at most 9/8.
We prove this by casting the question as an extremal
problem for quadratic forms, and analyzing the resulting
structure using eigenvalues of the Laplacian matrix of
G. From this, we obtain a characterization of the set of
graphs G for which some vector of internal opinions s
yields a price of anarchy of 9/8.

We show that this bound of 9/8 continues to hold
even for some generalizations of the model — when
nodes i have different coefficients wi on the cost terms
for their internal opinions, and (in a kind of infinite
limit of node weight) when certain nodes are “fixed”
and simply do not modify their opinions.

Our Results: Directed Graphs: We next consider
the case in which G is a directed graph; the form
of the cost functions remains exactly the same, with
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(b) Nash equilibrium.
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(c) Optimal solution.

Figure 2. An example demonstrating the price of anarchy of
a directed graph can be unbounded.

directed edges playing the role of undirected ones, but
the range of possible behaviors in the model becomes
very different, owing to the fact that nodes can now
exert a large influence over the network without being
influenced themselves. Indeed, as Matt Jackson has ob-
served, directed versions of repeated averaging models
can naturally incorporate “external” media sources; we
simply include nodes with no outgoing links, so that
in equilibrium they maintain precisely their internal
opinion [13].

We first show that the spectral machinery developed
for analyzing undirected graphs can be extended to the
directed case; through an approach based on generalized
eigenvalue problems we can efficiently compute the
maximum possible price of anarchy, over all choices of
internal node opinions, on a given graph G. However,
unlike in the case of undirected graphs, this price
of anarchy can be very large; the simple example in
Figure 2 shows a case in which n − 1 nodes with
internal opinion 0 all link to a single node that has
internal opinion 1 and no out-going edges, producing
an in-directed star. As a result, the social cost of the
Nash equilibrium is Ω(n), whereas the minimum social
cost is at most 1, since the player at the center of the
star could simply shift her opinion to 0. Intuitively,
this corresponds to a type of social network in which
the whole group pays attention to a single influential
“leader” or “celebrity”; this drags people’s opinions far
from their internal opinions si, creating a large social
cost. Unfortunately, the leader is essentially unaware of
the people paying attention to her, and hence has no
incentive to modify her opinion in a direction that could
greatly reduce the social cost.

In Section 3 we show that a price of anarchy lower-
bounded by a polynomial in n can in fact be achieved
in directed graphs of constant degree, so this behavior
is not simply a consequence of large in-degree. It thus
becomes a basic question whether there are natural
classes of directed graphs, and even bounded-degree
directed graphs, for which a constant price of anarchy
is achievable.

Unweighted Eulerian directed graphs are a natural
class to consider — first, because they generalize undi-
rected graphs, and second, because they capture the idea
that at least at a local level no node has an asymmetric
effect on the system. We use our analysis framework for
directed graphs to derive bounds on the price of anarchy
of two subclasses of Eulerian graphs: The first subclass
consists of Eulerian asymmetric directed graphs1 with
maximum degree d and edge expansion at most α. Here
we show a bound of O(d2α−2) on the price of anarchy.
The second subclass consists of unweighted d-regular
Eulerian graphs, for which we obtain a bound of d+ 1
on the price of anarchy.

Our Results: Modifying the Network: Finally, we
consider an algorithmic problem within this framework
of opinion formation. The question is the following:
if we have the ability to modify the edges in the
network (subject to certain constraints), how should we
do this to reduce the social cost of the Nash equilibrium
by as much as possible? This is a natural question
both as a self-contained issue within the mathematical
framework of opinion formation, and also in the context
of applications: many social media sites overtly and
algorithmically consider how to balance the mix of news
content [1], [4], [16], [17] and also the mix of social
content [3], [18] that they expose their users to, so as
to optimize user engagement on the site.

We focus on three main variants on this question:
when all edges must be added to a specific node (as in
the case when a site can modify the amount of attention
directed to a media source or celebrity); when all edges
must be added from a specific node (as in the case when
a particular media site tries to shift its location in the
space of opinions by blending in content from others);
and when edges can be added between any pair of nodes
in the network (as in the case when a social networking
site evaluates modifications to its feeds of content from
one user to another [3], [18]).

Adding edges to reduce the social cost has an in-
tuitive basis: it seems natural that exposing people to
others with different opinions can reduce the extent of
disagreement within the group. When one looks at the
form of the social cost c(y), however, there is something

1An Eulerian asymmetric directed graph is an Eulerian graph that
does not contain any pair of oppositely oriented edges (i, j) and (j, i).



slightly counter-intuitive about the idea of adding edges
to make things better: the social cost is a sum of
quadratic terms, and by adding edges to G we are
simply adding further quadratic terms to the cost. For
this reason, in fact, adding edges to G can never improve
the optimal social cost. But adding edges can improve
the social cost of the Nash equilibrium, and sometimes
by a significant amount — the point is that adding terms
to the cost function shifts the equilibrium itself, which
can sometimes more than offset the additional terms.
For example, if we add a single edge from the center of
the star in Figure 2 to one of the leaves, then the center
will shift her opinion to 2/3 in equilibrium, causing all
the leaves to shift their opinions to 1/3, and resulting
in a Θ(n) improvement in the social cost. In this case,
once the leader pays attention to even a single member
of the group, the social cost improves dramatically.

In Section 4 we show that, in multiple variants, the
problem of where to add edges to optimally reduce the
social cost is NP-hard. But we obtain a set of positive
results as well, including a 9

4 -approximation algorithm
when edges can be added between arbitrary pairs of
nodes, and an algorithm to find the optimal amount of
additional weight to add to a given edge.

2. UNDIRECTED GRAPHS

We first consider the case of undirected graphs and
later handle the more general case of directed graphs.
The main result in this section is a tight bound on
the price of anarchy for the opinion-formation game in
undirected graphs. After this, we discuss two slight ex-
tensions to the model: in the first, each player can put a
different amount of weight on her internal opinion; and
in the second, each player has multiple fixed opinions
she listens to. We show that both models can be reduced
to the basic form of the model that we study first.

For undirected graphs we can simplify the social cost
to the following form:

c(z) =
∑
i

(zi − si)2 + 2
∑

(i,j)∈E,i>j

wi,j(zi − zj)2.

We can write this concisely in matrix form, by using
the weighted Laplacian matrix L of G. L is defined by
setting Li,i =

∑
j∈N(i) wi,j and Li,j = −wi,j . We can

thus write the social cost as c(z) = zTAz + ||z − s||2,
where A = 2L. The optimal solution is the y minimiz-
ing c(y). By taking derivatives, we see that the optimal
solution satisfies (A+ I)y = s. Since the Laplacian of
a graph is a positive semidefinite matrix, it follows that
A+ I is positive definite. Therefore, (A+ I)y = s has
a unique solution: y = (A+ I)−1s.

In the Nash equilibrium each player chooses an
opinion in order to minimize her cost; in terms of
the derivatives of the cost functions, this implies that

c′i(x) = 0 for all i. Thus, to find the opinions of
the players in the Nash equilibrium we should solve
the following system of equations: ∀i (xi − si) +∑
j∈N(i) wi,j(xi − xj) = 0. Therefore in the Nash

equilibrium each player holds an opinion which is a
weighted average of her internal opinion and the Nash
equilibrium opinions of all her neighbors. This can be
succinctly written as (L + I)x = ( 1

2A + I)x = s. As
before 1

2A + I is a positive definite matrix, and hence
the unique Nash equilibrium is x = ( 1

2A+ I)−1s.

We now begin our discussion on the price of anarchy
(PoA) of the opinion game — the ratio between the
cost of the optimal solution and the cost of the Nash
equilibrium.

Our main theorem is that the price of anarchy of the
opinion game is at most 9/8. Before proceeding to prove
the theorem we present a simple upper bound of 2 on
the PoA for undirected graphs. To see why this holds,
note that the Nash equilibrium actually minimizes the
function zT ( 1

2A)z + ||z − s||2 (one can check that this
function’s partial derivatives are the system of equations
defining the Nash equilibrium). This allows us to write
the following bound on the PoA:

PoA =
c(x)

c(y)
≤

2(xT ( 1
2A)x+ ||x− s||2)

c(y)

≤
2(yT ( 1

2A)y + ||y − s||2)

c(y)

≤ 2c(y)

c(y)
= 2.

We note that this bound holds only for the undirected
case, as in the directed case the Nash equilibrium does
not minimize zT ( 1

2A)z + ||z − s||2.

We now state the main theorem of this section.

Theorem 2.1: For any graph G and any internal
opinions vector s, the price of anarchy of the opinion
game is at most 9/8.

Proof: The crux of the proof is relating the price of
anarchy of an instance to the eigenvalues of its Lapla-
cian. Specifically, we characterize the graphs and inter-
nal opinion vectors with maximal PoA. In these worst-
case instances at least one eigenvalue of the Laplacian
is exactly 1, and the vector of internal opinions is a
linear combination of the eigenvectors associated with
the eigenvalues 1, plus a possible constant shift for
each connected component. As a first step we consider
two matrices B and C that arise by plugging the
Nash equilibrium and optimal solution we previously
computed into the cost function and applying simple



algebraic manipulations:

c(y) = sT [(A+ I)−1 − I)2 + (A+ I)−1A(A+ I)−1︸ ︷︷ ︸
B

]s

c(x) = sT [(L+ I)−1 − I)2 + (L+ I)−1A(L+ I)−1︸ ︷︷ ︸
C

]s.

The next step is to show that the matrices A,B,C are
simultaneously diagonalizable: there exists an orthogo-
nal matrix Q such that A = QΛAQT , B = QΛBQT

and C = QΛCQT , where for a matrix M the notation
ΛM represents a diagonal matrix with the eigenvalues
λM1 , . . . , λMn of M on the diagonal. We prove this in
the full version, using basic facts about eigenvectors:

Lemma 2.2: A,B and C are simultaneously diago-
nalizable by a matrix Q whose columns are eigenvectors
of A.

We can now express the PoA as a function of the
eigenvalues of B and C. With s′ = QT s we have:

PoA =
c(x)

c(y)
=
sTCs

sTBs
=
sTQΛCQT s

sTQΛBQT s

=
s′TΛCs′

s′TΛBs′
=

∑n
i=1 λ

C
i s
′
i
2∑n

i=1 λ
B
i s
′
i
2 ≤ max

i

λCi
λBi

The final step of the proof consists of expressing λCi
and λBi as functions of the eigenvalues of A (denoted
by λi) and finding the value for λi maximizing the ratio
between λCi and λBi .

Lemma 2.3: maxi
λCi
λBi
≤ 9/8. The bound is tight if

and only if there exists an i such that λi = 2.
Proof: Using basic facts about eigenvalues we get:

λBi =

(
1− 1

λi + 1

)2

+
1

λi + 1
λi

1

λi + 1

=
λ2
i

(λi + 1)2
+

λi
(λi + 1)2

=
λ2
i + λi

(λi + 1)2
=

λi
(λi + 1)

λCi =

(
1− 1

1
2λi + 1

)2

+
1

1
2λi + 1

λi
1

1
2λi + 1

=
λ2
i

(λi + 2)2
+

4λi
(λi + 2)2

=
λ2
i + 4λi

(λi + 2)2
.

We can now write λCi /λ
B
i = φ(λi), where φ is a

simple rational function:

φ(λ) =
(λ2 + 4λ)/(λ+ 2)2

λ/(λ+ 1)
=

(λ2 + 4λ)(λ+ 1)

(λ+ 2)2λ

=
(λ+ 4)(λ+ 1)

(λ+ 2)2
=
λ2 + 5λ+ 4

λ2 + 4λ+ 4
.

By taking the derivative of φ, we find that φ is
maximized over all λ ≥ 0 at λ = 2 and φ(2) = 9/8.

The eigenvalues λi are all non-negative, so it is
always true that maxi φ(λi) ≤ 9/8. If 2 is an eigenvalue

of A (and hence 1 is an eigenvalue of the Laplacian)
then there exists an internal opinions vector s for which
the PoA is 9/8. What is this opinion vector s? To find it
assume that the ith eigenvalue of the Laplacian equals
1. To get a PoA of 9/8 we should choose s′i = 1
and ∀j 6= i s′j = 0 in order to hit only λi. By
definition s′ = QT s, and hence s = (QT )−1s′. Because
Q is orthogonal, QT = Q−1; thus, s = Qs′ = vi,
where vi is the eigenvector associated with λi. In fact,
any linear combination of the eigenvectors associated
with eigenvalues 0 and 1 where at least one of the
eigenvectors of 1 has a coefficient different than 0 will
obtain the maximal PoA.

With Lemma 2.3, we have completed the proof of
Theorem 2.1.

Corollary 2.4: We can scale the weights of any graph
to make its PoA be 9/8. If α is the scaling factor for the
weights, then the eigenvalues of the scaled A matrix are
αλi. Therefore by choosing α = 2

λi
for any eigenvalue

other than 0 we get that there exists an internal opinions
vector for which the PoA is 9/8.

2.1. Arbitrary Node Weights and Players with Fixed
Opinions

Our first extension is a model in which different
people do not put the same weight on their internal
opinion. In this extension, each node in the graph has
a strictly positive weight wi and the cost function is:
c(z) =

∑
i

[wi(zi − si)2 +
∑

j∈N(i)

wi,j(zi − zj)2]. The

bound of 9/8 on the PoA holds even in this model.
To see this, let w be the vector of node weights
and d(w) be a diagonal matrix with the values of
w on the diagonal. In terms of the scaled variables
ẑ = d(

√
w )z, ŝ = d(

√
w )s and the scaled matrix

Â = d(
√
w )−1Ad(

√
w )−1, the cost takes the same

form as before: c(ẑ) = ‖ẑ − ŝ‖2 + ẑT Âẑ. We have
therefore proved:

Claim 2.5: The PoA of the game with arbitrary
strictly positive node weights is bounded by 9/8.

Next we show how to handle the case in which a
subset of the players may have node weights of 0, which
can equivalently be viewed as a set of players who
have no internal opinion at all. We analyze this by first
considering the case in which all non-zero node weights
are the same; for this case we prove in the full version:

Claim 2.6: The PoA is bounded by 9/8 if every
player has either weight 1 or 0 on her internal opinion.
By applying the change of variables from Claim 2.5 we
can also handle non-zero arbitrary weights.

In the second model we present, some nodes have
fixed opinions. In this model we partition the nodes into
two sets A and B. Nodes in B are completely fixed in
their opinion and are non-strategic, while nodes in A



have no internal opinion – they simply want to choose
an opinion that minimizes the sum of their edges costs
to their neighbors (which may include a mix of nodes in
A and B). We can think of nodes in A as people forming
their opinion and of nodes in B as news sources with a
specific fixed orientation. We denote the fixed opinion
of a node j ∈ B by sj . The social cost for this model
is:

c(z) =
∑

(i,j)∈E;
i∈A;j∈B

(zi − sj)2 + 2
∑

(i,j)∈E;
i,j∈A;i>j

(zi − zj)2.

Note that this clearly generalizes the original model,
since we can construct a distinct node in B to represent
each internal opinion. In the proof of Claim 2.7 in the
full version we perform the reduction in the opposite
direction, reducing this model to the basic model. To
do this, we assign each node an internal opinion equal
to the weighted average of the opinions of her fixed
neighbors, and a weight equal to the sum of her fixed
neighbors’ weights. We then show that the PoA of the
fixed opinion model is bounded by the PoA of the basic
model and thus get:

Claim 2.7: The PoA of the fixed opinion model is at
most 9/8.

3. DIRECTED GRAPHS

We begin our discussion of directed graphs with
an example showing that the price of anarchy can be
unbounded even for graphs with bounded degrees. Our
main result in this section is that we can nevertheless
develop spectral methods extending those in Section 2
to find internal opinions that maximize the PoA for a
given graph. Using this approach, we identify classes of
directed graphs with good PoA bounds.

In the introduction we have seen that the PoA of an
in-directed star can be unbounded. As a first question,
we ask whether this is solely a consequence of the un-
bounded maximum in-degree of this graph, or whether it
is possible to have an unbounded PoA for a graph with
bounded degrees. Our next example shows that one can
obtain a large PoA even when all degrees are bounded:
we show that the PoA of a bounded degree tree can
be Θ(nc), where c ≤ 1 is a constant depending on the
in-degrees of the nodes in the tree.

Example 3.1: Let G be a 2k-ary tree of depth log2k n
in which the internal opinion of the root is 1 and the
internal opinion of every other node is 0. All edges
are directed toward the root. In the Nash equilibrium
all nodes at layer i hold the same opinion, which is
2−i. (The root is defined to be at layer 0.) The cost
of a node at layer i is 2 · 2−2i. Since there are 2ik

nodes at layer i, the total social cost at Nash equilibrium

is
log

2k
n∑

i=1

2ik21−2i = 2

log
2k
n∑

i=1

2(k−2)i. For k > 2 this

cost is 2k−1 (2k−2)log
2k
n − 1

2k−2 − 1
= 2k−1n

k−2
k − 1

2k−2 − 1
. The

cost of the optimal solution is at most 1; in fact it
is very close to 1, since in order to reduce the cost
the root should hold an opinion of ε very close to 0,
which makes the root’s cost approximately 1. Therefore
the PoA is Θ(n

k−2
k ). It is instructive to consider the

PoA for extreme values of k. For k = 2, the PoA
is Θ(log n), while for k = log n we recover the in-
directed star from the introduction where the PoA is
Θ(n). For intermediate values of k, the PoA is Θ(nc).
For example, for k = 3 we get that the PoA is Θ(n

1
3 ).

For directed graphs we do not consider the gen-
eralization to arbitrary node weights (along the lines
of Section 2.1), noting instead that introducing node
weights to directed graphs can have a severe effect on
the PoA. That is, even in graphs containing only two
nodes, introducing arbitrary node weights can make the
PoA unbounded. For example, consider a graph with
two nodes i and j. Node i has an internal opinion
of 0 and a node weight of 1, while node j has an
internal opinion of 1 and a node weight of ε. There
is a directed edge (i, j) with weight 1. There exists
a Nash equilibrium with a cost of 1/2, but the social
cost of the optimal solution is smaller than ε. To avoid
this pathology, we restrict our attention to uniform node
weights from now on.

3.1. The Price of Anarchy in a General Graph

For directed graphs the cost of the Nash equilibrium
and the cost of the optimal solution are respectively
c(y) = sTBs and c(x) = sTCs, as before. But now,
C has a slightly more complicated form since L is no
longer a symmetric matrix. We first define the matrix
A by setting Ai,j = −wi,j − wj,i for i 6= j and Ai,i =∑
j∈N(i) wi,j + wj,i. The matrix A is the weighted

Laplacian for an undirected graph where the weight on
the undirected edge (i, j) is the sum of the weights in
the directed graph for edges (i, j) and (j, i). We then
define C =

(
(L+ I)−1 − I

)T (
(L+ I)−1 − I

)
+ (L+

I)−TA(L + I)−1. The price of anarchy, therefore, is
sTCs

sTBs
as before. The primary distinction between the

price of anarchy in the directed and undirected cases is
that in the undirected case, B and C are both rational
functions of A. In the directed case, no such simple
relation exists between B and C, so that we cannot
easily bound the generalized eigenvalues for the pair
(and hence the price of anarchy) for arbitrary graphs.
However, given a directed graph our main theorem
shows that we can always find the vector of internal
opinions s yielding the maximum PoA:



Theorem 3.2: Given a graph G it is possible to find
the internal opinions vector s yielding the maximum
PoA up to a precision of ε in polynomial time.

Proof: The total social cost is invariant under
constant shifts in opinion. Therefore, without loss of
generality, we restrict our attention to the space of
opinion vectors with mean zero. Let us define a matrix
P ∈ Rn×(n−1) to have Pj,j = 1, Pj+1,j = −1, and
Pi,j = 0 otherwise. The columns of P are a basis for the
space of vectors with mean zero; that is, we can write
any such vector as s = P ŝ for some ŝ. We also define
matrices B̄ = PTBP and C̄ = PTCP , which are
positive definite if the symmetrized graph is connected.
The price of anarchy is then given by the generalized
Rayleigh quotient ρC̄,B̄(ŝ) = (ŝT C̄ŝ)/(ŝT B̄ŝ). Station-
ary points of ρC̄,B̄ satisfy the generalized eigenvalue
equation (C − ρC̄,B̄(ŝ)B̄)ŝ = 0. In particular, the
price of anarchy is the largest generalized eigenvalue,
and the associated eigenvector ŝ∗ corresponds to the
maximizing choice of initial opinions.

The solution of generalized eigenvalue problems is
a standard technique in numerical linear algebra, and
there are good algorithms that run in polynomial time;
see [12, §8.7]. In particular, because B̄ is symmetric and
positive definite, we can use the Cholesky factorization
B̄ = RTR to reduce the problem to the standard
eigenvalue problem (R−T C̄R−1 − λI)(Rŝ) = 0.

3.2. Upper Bounds for Classes of Graphs

In order to get good bounds on the PoA we re-
strict our attention to Eulerian graphs and pursue the
following course of action: we begin by defining in
Claim 3.3 a function g(z) with the special property
that its minimum value is the same as the cost of
the Nash equilibrium. We next show in Claim 3.5
that by bounding g(z) with a function of a specific
structure we can get a bound on the PoA. Using this we
present bounds for Eulerian bounded-degree asymmetric
expanders, directed cycles, and the generalization of
directed cycles to Eulerian d-regular graphs. As a first
step, we use Schur complements to prove the following:

Claim 3.3: Let g(z) = zTMz+ ||z− s||2 with M =
(I − C)−1 − I . If (I − C) is nonsingular then for the
Nash equilibrium x, we have minz g(z) = c(x).

Proof: The social cost is a quadratic function of
the expressed opinion vector and the internal opinion
vector:

c(z) = zTAz + ‖z − s‖2 =

[
z
s

]T [
A+ I −I
−I I

] [
z
s

]
.

To compute the socially optimal vector, we minimize
this quadratic form in z and s subject to constraints on
s. This yields c(y) = sTBs, where the matrix

B = ((A+I)−1−I)2+(A+I)−1A(A+I)−1 = I−(A+I) −1

is a Schur complement in the larger system. Schur
complements typically arise in partial elimination of
variables from linear systems. in this case, we have
eliminated the z variables in the stationary equations
for a critical point in the extended quadratic form.

Now consider the Nash equilibrium. As we assume
that 1 is not an eigenvalue of C, we can define

M = (I − C)−1 − I.

The matrix M is symmetric and positive semidefinite,
with a null space consisting of the constant vectors. That
is, we can see M as the Laplacian of a new graph. By
design, C = I − (M + I)−1, so we can mimic the
construction above to express C as a Schur complement
in a larger system. Thus, the social cost of the Nash
equilibrium can be written

c(x) = min
z

[
z
s

]T [
M + I −I
−I I

] [
z
s

]
,

which is the optimal social cost in the new network.
We then complement the claim by showing that for

Eulerian graphs (I−C) is nonsingular and furthermore
the matrix M has a nice structure:

Lemma 3.4: For Eulerian graphs M = A+ LLT .
Proof: We denote L̃ = L+ I and Ã = A+ I then:

I − C = I − (L̃−1 − I)T (L̃−1 − I)− L̃−T (Ã− I)L̃−1

= L̃−1 + L̃−T − L̃−T ÃL̃−1.

We use the fact that for Eulerian graphs A = L + LT

which implies that Ã = L̃+ L̃T − I to simplify I −C:

I − C = L̃−1 + L̃−T − L̃−T (L̃+ L̃T − I)L̃−1

= L̃−T L̃−1.

We have that M = (L+ I)(L+ I)T − I = A+ LLT .
Let us understand what the matrix LLT looks like. On
the diagonal we have [LLT ]i,i = d2

i + di where di is
the degree of node i and off the diagonal [LLT ]i,j =
diLj,i+djLi,j +

∑
k 6=i,j(Li,kLj,k) = diLj,i+djLi,j +

|N(i) ∩N(j)|.
Next, we show that by bounding g(z) we can get

bounds on the PoA:
Claim 3.5: Let G be connected, and let β be such

that g(z) ≤ β(zTAz) + ||z− s||2. Then PoA ≤ β+βλ2

1+βλ2
,

where λ2 is the second smallest eigenvalue of A.
Proof: Let z̃ be the vector minimizing g(z) and ỹ

the vector minimizing β(ỹTAỹ) + ||ỹ − s||2. Then we
can derive the following bound on the price of anarchy:

PoA(G) =
c(x)

c(y)
=
g(z̃)

c(y)
≤ g(ỹ)

c(y)

≤ β(ỹTAỹ) + ||ỹ − s||2

(yTAy) + ||y − s||2
=
sTCs

sTBs
,



where C and B are defined similarly to the matrices
in Theorem 2.1 and are simultaneously diagonalizable.
If λi is an eigenvalue of A then λBi = λi

1+λi
and

λCi = βλi

1+βλi
. As before the maximum PoA is achieved

when βλi

1+βλi
/ λi

1+λi
= βλi+β

βλi+1 is maximized. Since all
eigenvalues of A are positive we have that this is
maximized for λ2.

Corollary 3.6: As an immediate corollary we have
that for general Eulerian graphs the PoA is bounded by
β. This holds even for weighted Eulerian graphs (each
node’s incoming weight is equal to its outgoing weight).

Furthermore, say that an Eulerian bounded degree
asymmetric expander is an Eulerian graph that does
not contain any pair of oppositely oriented edges (i, j)
and (j, i), and whose underlying undirected graph has
maximum degree d and edge expansion α. We show:

Lemma 3.7: For an Eulerian bounded degree asym-
metric expander with expansion α, the PoA is bounded
by O(d2/α2).

Proof: For an asymmetric graph, the matrix A is
the Laplacian of the underlying graph; this is why we
require in the lemma that the graph is asymmetric.

If d is the maximum degree, then we have λ2 ≤ λn ≤
2d. We also have that λ2 ≥ α2/2d [6]. We can now use
this to bound the PoA in terms of the graph’s expansion
as follows:

β + βλ2

1 + βλ2
≤ β + βλ2

βλ2
≤ 1 + λ2

λ2

≤ 2d(1 + 2d)

α2
= O(d2/α2).

This brings us to the following bound on the PoA,
which is also a tight bound:

Claim 3.8: The PoA of a directed cycle is bounded
by 2 and approaches 2 as the size of the cycle grows.

Proof: For a cycle we have A = LLT ; therefore
g(z) = 2(zTAz) + ||z − s||2, and hence the bound
assumed in Claim 3.5 is actually a tight bound. In order
to show that the PoA indeed approaches 2 we need to
show that λ2 approaches 0 as the size of the cycle grows.
The fact that A is the Laplacian of an undirected cycle
comes to our aid and provide us an exact formula for
λ2: λ2 = 2(1 − cos( 2π

n )) (where n is the size of the
cycle), and this concludes the proof.

The bound can be generalized for Eulerian graphs:
Claim 3.9: The PoA of a d-regular Eulerian graph is

bounded above by d+ 1.
Proof: Similarly to directed cycles all we need to

do is to show that g(z) ≤ (d + 1)(zTAz) + ||z − s||2
and the claim follows directly from Claim 3.5. We show

that zT (A+ LLT )z ≤ (d+ 1)zTAz:

zT (LLT )z = (d2 + d)
∑
i

z2
i − 2d

∑
(i,j)∈E

zizj

+
∑
i

∑
j>i

2|N(i) ∩N(j)|zizj .

Notice that the last term can be bounded by
∑
i d(d−

1)z2
i using the fact that x2 + y2 ≥ 2xy and that in a

d-regular graph two nodes can share at most (d − 1)
neighbors. Thus we get:

zT (LLT )z ≤ d

2d
∑
i

z2
i − 2

∑
(i,j)∈E

zizj

 = d(zTAz).

For d-regular graphs we leave open the question of
whether this is a tight bound or not. A more general
open question which we leave open is whether there
exists a Eulerian graph with PoA greater than 2.

4. ADDING EDGES TO THE GRAPH

In this section we consider the following class of
problems: Given an unweighted graph G and a vector
of internal opinions s, find edges E′ to add to G so as
to minimize the social cost of the Nash equilibrium.
We begin with a general bound linking the possible
improvement from adding edges to the price of anarchy.
Let G be a graph (either undirected or directed). Denote
by cG(z) the cost function and by x and y the Nash
equilibrium and optimal solution respectively. Let G′

be the graph constructed by adding edges to G. Then:
cG(x)

cG′(x′)
≤ cG(x)

cG′(y′)
≤ cG(x)

cG(y)
= PoA(G). To see why

this is the case, we first note that cG′(y′) ≤ cG′(x
′)

since the cost of the Nash equilibrium cannot be smaller
than the optimal solution. Second, cG(y) ≤ cG′(y

′)
simply because cG′(y) contains more terms then cG(y).
Therefore we have proved the following claim:

Claim 4.1: Adding edges to a graph G can improve
the cost of the Nash equilibrium by a multiplicative
factor of at most the PoA of G.

We study three variants on the problem, discussed
in the introduction. In all variants, we seek the “best”
edges to add in order to minimize the social cost of
the Nash equilibrium. The variants differ mainly in the
types of edges we may add. First, we consider the case
in which we can only add edges from a specific node
w. Here we imagine that node w is a media source
that therefore does not have any cost for holding an
opinion, and so we will use a cost function that ignores
the cost associated with it when computing the social
cost. Hence, our goal is to find a set of nodes F such
that adding edges from node w to all the nodes in
F minimizes the cost of the Nash equilibrium while



ignoring the cost associated with w. By reducing the
subset sum problem to this problem we show that:

Claim 4.2: Finding the best set of edges to add from
a specific node w is NP-hard.

Next, we consider the case in which we can only
add edges to a specific node; by reducing the minimum
vertex cover problem to this problem we get that:

Claim 4.3: Finding the best set of edges to add to a
Specific node w is NP-hard.

The last case we consider is the most general one in
which we can add any set of edges. For this case we
leave open the question of the hardness of adding an
unbounded set of edges. We do show that finding the
best set of k arbitrary edges is NP-hard. This is done
by a reduction from k-dense subgraph [9] :

Claim 4.4: Finding a best set of arbitrary k edges is
NP-hard.

Finding approximation algorithms for all of the prob-
lems discussed in Claims 4.2, 4.3, and 4.4 is an interest-
ing question. As a first step we offer a 9

4 -approximation
for the problem of optimally adding edges to a directed
graph G — a problem whose hardness for exact opti-
mization we do not know. The approximation algorithm
works simply by including the reverse copy of every
edge in G that is not already in G; this produces a bi-
directed graph G′.

Claim 4.5: cG′(x′) ≤ 9
4cG(y).

Proof: By Theorem 2.1 we have that cG′(x′) ≤
9
8cG′(y

′). Also notice that in the worst case, in order to
get from G to G′, we must double all the edges in G.
Therefore cG′(y′) ≤ 2cG(y). By combining the two we
have that cG′(x′) ≤ 9

4cG(y).
For weighted graphs we can also include reverse

copies of edges that do appear in G and therefore
achieve an approximation ratio of 2 for analogous
reasons.

4.1. Adding a Single Weighted Edge

We now consider how to optimally choose the
weight to put on a single edge (i, j), to minimize
the cost of the Nash equilibrium. Suppose we add
weight ρ to the edge (i, j). The modified Laplacian is
L′ = L+ ρei(ei − ej)T , where ei is the ith vector in
the standard basis. The modified Nash equilibrium is
x′ = (L′ + I)−1s = ((L+ I) + ρei(ei − ej)T )−1s.

Using the Sherman-Morrison formula for the rank-
one update to an inverse [12, §2.1.3], we have

x′ =

[
(L+ I)−1 − (L+ I)−1ρei(ei − ej)T (L+ I)−1

1 + ρ(ei − ej)T (L+ I)−1ei

]
s

= x− vi
(

ρ(xi − xj)
1 + ρ(vi,i − vi,j)

)
,

where vi = (L + I)−1ei is the influence of si on
the Nash opinions in the original graph. Therefore, vi

gives the direction of change of the Nash equilibrium
when the weight on (i, j) is increased: the equilibrium
opinions all shift in the direction of vi. We prove the
following key properties of this influence vector vi:

Lemma 4.6: The entries of vi = (L + I)−1ei lie in
[0, 1], and vi,i is the unique maximum entry.

Proof: The influence vector vi is simply the Nash
equilibrium for the internal opinion vector ei. The Nash
equilibrium is the limit of repeated averaging starting
from the internal opinions, and the average of numbers
in [0, 1] is in [0, 1]. Thus the entries of vi are in [0, 1].

We show that vi,i is the maximal entry by contradic-
tion. Suppose vi,j is maximal for some j 6= i. Because
L + I is nonsingular, vi cannot be the zero vector, so
vi,j > 0. The equilibrium equations for j can be written

vi,j =

∑
k∈N(j) wj,kvi,k

1 +
∑
k∈N(j) wj,k

≤

( ∑
k∈N(j) wj,k

1 +
∑
k∈N(j) wj,k

)
max
k∈N(j)

vi,k ≤ max
k∈N(j)

vi,k

where the final inequality is strict if vi,k 6= 0 for any
k ∈ N(j). But vi,k 6= 0 for some k ∈ N(j), since
otherwise vi,j would be zero. Therefore, there must be
some k ∈ N(j) such that vi,k > vi,j , which contradicts
the hypothesis that vi,j is maximal.

We now show how to choose the optimal weight ρ to
add to edge (i, j) to best reduce the social cost of the
Nash equilbrium.

Theorem 4.7: The optimal weight ρ to add to the
edge (i, j) can be computed in polynomial time.

Proof: Note that

x′i − x′j = (xi − xj)
(

1− ρ(vi,i − vi,j)
1 + ρ(vi,i − vi,j)

)
=

xi − xj
1 + ρ(vi,i − vi,j)

,

and we can write the new Nash equilibrium as x′ =
x− φvi, where

φ =
ρ(xi − xj)

1 + ρ(vi,i − vi,j)
= ρ(xi−xj)

x′i − x′j
xi − xj

= ρ(x′i−x′j).

For small values of ρ, we have that φ = ρ(xi − xj) +
O(ρ2); and as ρ → ∞, we have that φ → φmax =
(xi−xj)/(vi,i− vi,j) and x′i−x′j → 0. Thus, adding a
small amount of weight to edge (i, j) moves the Nash
equilibrium in the direction of the influence vector vi
proportional to the weight ρ and the discrepancy xi−xj ;
while adding larger amounts of weight moves the Nash
equilibrium by a bounded amount in the direction of the
influence vector vi, with the asymptotic limit of large
edge weight corresponding to the case when i and j
have the same opinion.



What does adding a weighted edge between i and
j do to the social cost at Nash equilibrium? In the
modified graph, the social cost is

c′(z) = zTAz + ρ(zi − zj)2 + ‖z − s‖2.

At the new Nash equilibrium, we have

c′(x′) = x′TAx′ + ρ(x′i − x′j)2 + ‖x′ − s‖2

= x′TAx′ + φ(x′i − x′j) + ‖x′ − s‖2.

Because x′ is a linear function of φ, the above shows
that c′(x′) is a quadratic function of φ, which we can
simplify to c′(x′) = αijφ

2 − 2βijφ+ c(x), where

αij = vTi (A+ I)vi − (vi,i − vi,j)

βij = vTi ((A+ I)x− s)− 1

2
(xi − xj).

The range of possible values for φ is between 0 (cor-
responding to ρ = 0) and φmax (corresponding to the
limit as ρ goes to infinity). Subject to the constraints on
the range of φ, the quadratic in φ is minimal either at 0,
at φmax, or at βij/αij (assuming this point is between
0 and φmax). We can therefore determine the optimal
weight for a single edge in polynomial time.

Note that the above computations also give us a
simple formula for the gradient components γij cor-
responding to differentiation with respect to wij :

γij ≡
d[c′(x′)]

dρ
=
d[c′(x′)]

dφ

dφ

dρ
= −2βij(xi − xj)

= (xi − xj)2 − 2(xi − xj)vTi ((A+ I)x− s).

The residual vector (A + I)x − s measures the extent
to which x fails to satisfy the equation for the socially
optimal opinion y. If this vector is large enough, and
if the influence vector vi is sufficiently well aligned
with the residual, then adding weight to the (i, j) edge
can decrease the social cost at Nash equilibrium. Thus,
though computing a globally optimal choice of addi-
tional edge weights may be NP-hard, we can generally
compute locally optimal edge additions via the method
of steepest descent.

Acknowledgments: We thank Michael Macy for
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